Safety and Efficacy of CT Fluoroscopy in Celiac Plexus Neurolysis in Hepatocellular Carcinoma Related Abdominal Pain

AHMED I. EBEED, M.D.*; HAITHAM M. FODA, M.D.*; SHERIF K. ARAFA, M.D.** and AMIR A. EL SAYED, M.D.***
The Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Aswan University*, The Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Kafr El-Sheikh** and Aswan*** Universities, Egypt

Abstract

Background: Management of hepatocellular carcinoma related abdominal pain is a complex and challenging issue as most HCC develop on top of liver cirrhosis and the deficient hepatic function obstacle the high-dose narcotic analgesics. Imaging-guided Celiac plexus neurolysis for refractory pain management has been used for almost 100 years in patients with advanced abdominal malignancy and effectively control pain without the noted side effects typical of opioids, however CT guided celiac block is the most accurate method for celiac block guidance the lack of real time visualization, radiation exposure & time consuming call the need for real time CT fluoroscopy guidance.

Aim of Study: To assess the efficacy of CT fluoroscopy in celiac plexus neurolysis in hepatocellular carcinoma related abdominal pain.

Patient and Methods: This study was carried out on 30 adult patients suffering from abdominal pain due to infiltrative or metastatic HCC and pain not controlled by WHO analgesic step ladder. Celiac Plexus Neurolysis (CPN) is achieved with intravenous conscious sedation, prognostic block accomplished by using injecting a near by anesthetic accompanied with the aid of alcohol for celiac plexus block, after 10 minutes, if the injection correctly relieved pain; maximum filling of the retro-pancreatic area with ethanol is a sign of enough neurolysis.

Results: Marked decrease of pain severity in all patients was noted as a sharp fall of the Numerical Rating Scale (NRS) score on the 1 st day post CPN with relatively stationary course for 3 months in the patient survived their primary disease.

Conclusion: Celiac Plexus Neurolysis (CPN) provides an effective technique in decreasing pain severity in HCC patients, and so decreases the analgesic requirement, their side effects and may increase patients’ survival, CT fluoroscopy guided CPN is an easy and safe procedure that provides high success rates, markedly decreased patient radiation dose and total procedure time compared with use of conventional CT guidance.

Key Words: Hepatocellular carcinoma – Abdominal cancer pain – Celiac plexus neurolysis – CT fluoroscopy.

Introduction

ABDOMINAL pain is a major problem for patients with HCC [1,2]. More than 80% of patients with HCC have underlying liver disease or cirrhosis [3]; cirrhosis may change the pharmacodynamics of drugs by influencing changes in drug absorption, distribution, bioavailability, and hepatic and renal clearance mechanisms generating pain management difficulties [4]. As deficient hepatic function must be taken into consideration when prescribing pain medications as most analgesics are metabolized in the liver and even standard doses or dosing frequency can induce adverse side impacts such as variceal hemorrhage, ascites, renal failure, and hepatic encephalopathy or even can precipitate liver failure [4]. Moreover cancer patient necessitates chronic use of high-dose narcotic analgesics [5].

The celiac plexus is a network of ganglia that relay preganglionic sympathetic and parasympathetic efferent fibers and visceral sensory afferent fibers to the upper abdominal viscera. The visceral sensory afferent fibers transmit nociceptive impulses from the liver, gallbladder, pancreas, spleen, adrenal glands, kidneys, distal esophagus, and bowel to the level of the distal transverse colon. Located in the retroperitoneal space just inferior to the celiac trunk and along the 2 sides of the aorta, between the levels of T12-L1 disc space and L2, the celiac plexus can easily be reached by several different approaches [6].

Methods leading to an inhibition of pain transmission are therefore encouraging alternatives to
alleviate pain and decrease of the danger of side effects caused by drugs. For more than 100 years, imaging-guided celiac plexus neurolysis has been used in patients with advanced abdominal neoplasms. It includes injecting a neurolytic substance (most frequently absolute alcohol) into or around the celiac plexus to inhibit these impulses and efficiently relieve pain without the noted opioid side effects [7].

Imaging guidance for celiac plexus neurolysis is mostly done with multidetector Computed Tomography (CT), which has replaced the use of fluoroscopy or Ultrasonography (US)-guided techniques [8].

In comparison to conventional fluoroscopy and Ultrasonography (US), CT has been limited as an interventional guidance method due to absence of real-time capability. While conventional CT enables the determination of optimal puncture sites, the direction of needle insertion and the assessment of needle positioning after insertion, it needs the time-consuming acquisition of multiple single or helical images and does not enable real-time assessment during the puncture operation [9].

The development of slip ring technology and the continuously rotating X-ray tube has made acquisition of CT images. The evolution of new image reconstruction algorithms and high-speed array parallel processor systems for real-time raw data reconstruction and display paved the way for the development of real-time CT fluoroscopy (also known as continuous imaging CT). Also, the introduction of X-ray tubes with much improved heat capacity and more sensitive semiconductor detectors contributed to evolution of CT fluoroscopy [10].

The use of CT fluoroscopy for the guidance of interventional radiologic procedures markedly decreased patient radiation dose and total procedure time compared with use of conventional CT guidance [11].

Aim of the study: To assess the safety and efficacy of CT fluoroscopy in celiac plexus neurolysis in hepatocellular carcinoma related abdominal pain.

Patients and Methods

Thirty patients (12 females, 18 males), (age range 49-68 years) (mean age, 53.4 ±3.83 years), suffering from uncontrolled upper abdominal pain due HCC (5 local disease, 10 infiltrative and 15 extra hepatic and nodal metastatic hepatocellular carcinoma) were enrolled in this study between January 2018 to June 2019 in Radiology Department at our university hospitals, referred from outpatient clinic.

Inclusion criteria include abdominal pain due to liver cancer, pain not controlled by WHO analgesic step ladder or patients suffering from side effects of analgesic drugs.

Exclusion criteria include patient refusal of the study, patients with coagulopathy or patients suffering from marked ascites.

The study was approved by the Medical Ethical Committee of Faculty of Medicine of our University.

Imaging procedures will be operated on 160-slice CT scanner with CT fluoroscopy.

Celiac plexus neurolysis technique:

All patients underwent real time CT fluoroscopy-guided celiac plexus neurolysis, after informed consent was obtained, good history taking, general examination, pre procedure investigation (including abdominal US/CT, coagulation profile and chest X-ray), patients should stop analgesics overnight and fasting for about 8 hours.

The first essential step in real time CT fluoroscopy-guided celiac plexus neurolysis is pre-procedure planning.

Celiac plexus neurolysis is performed under intravenous conscious sedation with agents such as midazolam and fentanyl. Cardiorespiratory monitoring, including electrocardiography, blood pressure, and pulse oximetry, is an essential component of the procedure. Oxygen masks if needed for old or obese patients.

Patient position:

Posterior paravertebral approach was done in 18 patients (5 of them with mild to moderate ascites, 7 patients with locally infiltrative left lobe subcapsular masses with no safe anterior passage & 6 patients with extensive para aortic extra hepatic nodal metastasis) while patients were in prone or oblique position. Anterior approach was done in (12 patients) while patients were in supine position.

Unilateral injection was sufficient in 27 patients however 3 patients need bilateral approach.

A control axial scanning of the abdomen was taken to localize the region of interest which covers the course of the needle to the celiac plexus.
The video monitor was used inside the scanning room. The panel was used in the scanning room.

Exposures were activated by using a footswitch. The X-ray tube current is adjusted to be 30-50mA to reduce the patient radiation exposure, compared with conventional CT with 150-400mA.

After sterilization of the skin, setting the local cutaneous and subcutaneous anesthesia with lidocaine 2% (20mg/ml). A 20-cm long 20-gauge Chiba needle was used for procedure. The needle tip was inserted to the right side or to the left side of the celiac trunk under the guidance of serial CT cuts. When the tip of the needle appears to be properly positioned, a suction has been introduced to ensure that the tip of the needle is not inside a blood vessel, and a “prognostic block” was performed by injecting a local anesthetic (9-12ml of lidocaine 2%) mixed with 2ml contrast agent (ultravist) to show the distribution of the lidocaine under the CT cuts. Local anesthesia should always be injected before alcohol to decrease ganglion neurolysis pain & to perform a diagnostic celiac plexus block. 15-30ml of 90% ethanol mixed with 3ml contrast, indicate the distribution of alcohol after 10 minutes if effectively relieved pain (successful block). Ethanol spread has been assessed. An indication of adequate neurolysis is the maximum retropancreatic space by ethanol. 3ml of lidocaine 2% were injected before the needle was removed to reduce ethanol irritation.

The serial CT scans were acquired immediately after needle removal covering the region from the upper border of the 12th thoracic to the lower border of the 1st lumbar vertebrae to display the spread of the neurolytic solution. The patient stays in the hospital for 4 hours under observation.

The degree of pain relief was assessed subjectively using the Numerical Rating Scale (NRS) score before and after CPN. A marked decline in pain intensity was observed in all patients as a sharp drop in the NRS score on the 1st day after CPN with a relatively stationary 3-month course in which the patient survived their main illness.

Baseline NRS score was 9.1 ± 0.85. One day after CPN, pain intensity decreased markedly to 1.3 ± 0.71, one week after CPN the decrease in pain intensity maintained at the same level 1.7 ± 0.89, one month after CPN the decrease in pain intensity maintained at the same level 1.9 ± 0.79 and 3 months after CPN pain intensity still decreased significantly to 2.3 ± 1.02. The decrease in pain intensity at its average before and at different sequences after CPN recorded high significant statistical difference (p-value <0.001) Fig. (1).

Results

CT-guided CPN was carried out for 30 adult patients. The technique was successfully performed in 30 patients (100%), of whom 21 (70%) were males and 9 (30%) were females with mean age 50.4±4.83.

According to the accessibility and the ease of entrance:

Right celiac ganglion: 18/30 patients (60%).

Left celiac ganglion: 9/30 patients (30%).

Bilateral needle insertion: 3/30 patients (10%).

Degree of pain was assessed by Numerical Rating Scale (NRS) score before and after CPN.

A marked decline in pain intensity was observed in all patients as a sharp drop in the NRS score on the 1st day after CPN with a relatively stationary 3-month course in which the patient survived their main illness.

Baseline NRS score was 9.1 ± 0.85. One day after CPN, pain intensity decreased markedly to 1.3 ± 0.71, one week after CPN the decrease in pain intensity maintained at the same level 1.7 ± 0.89, one month after CPN the decrease in pain intensity maintained at the same level 1.9 ± 0.79 and 3 months after CPN pain intensity still decreased significantly to 2.3 ± 1.02. The decrease in pain intensity at its average before and at different sequences after CPN recorded high significant statistical difference (p-value <0.001) Fig. (1).

![Degree of pain](image)
After CPN, analgesic drug intake decreased markedly for three months after CPN. After one week, all patients on opioids stopped them and 5 patients (16.6%) took NSAIDS. After one month, all patients stopped opioids and 7 patients (23.4%) took NSAIDS. While after three months, 12 patients (40%) continued on NSAIDS and 3 patients only (10%) took opioids again but with smaller dose than the pre block doses Fig. (2).

There were no significant complications (vascular or neurological), however local irritant pain appeared in 18 patients (60%), post-CPN hypotension appeared in 5 patients (16.6%) who all responded to I.V fluid treatment while diarrhea appeared in 22 patients (73.4%) after CPN and all responded to I.V fluid treatment & Diosmectite sachets.

The patient dose exposure during the procedure of CT fluoroscopy was \(2.99 \pm 0.22\)mGy using low mA (30-50mA). The dose exposure during CT fluoroscopy was 91% less than conventional CT using (150-400mA), radiation dose exposure sheet was reviewed the DLP (dose-length product) in (mGy.cm) was calculated at the end of the procedure & compared to the radiation summary sheet of the diagnostic study for the same patient Figs. (3,4).

The mean radiation dose DLP used to complete the CT fluoroscopy procedure was \(48.2\)mGy.cm.

![Fig. (2): Bar graph shows opioids & NSAIDs intake before & after procedure.](image-url)

Fig. (3): (A, B, C) 55 male patient presented with elevated serum alpha feto protein and sever abdominal pain axial full dose diagnostic Triphasic CT revealed right lobe liver infiltrative HCC. (D) Total radiation exposure dose of the patient was \(1871\)mGy.cm. Analgesics: Tramadol tablet: two times daily. Pain degree by VAS scores (before CPN).
Ahmed I. Ebeed, et al. 925

Discussion

Treatment of pain is one of the most significant palliative treatment problems in patients with hepatocellular carcinoma. Although opioids efficiently alleviate pain, the problem is amplified and intervention-based pain control, particularly for patients with HCC infiltration or metastasis outside the liver, due to numerous side effects and complications associated with opioids.

Celiac Plexus Neurolysis (CPN) was defined by many studies as an interventional method used to control abdominal visceral pain associated with abdominal malignancies [12,13].

Although the use of CT fluoroscopy carries the hazard of radiation exposure to the patient and operator, the recently used ultra-low dose exposure during the procedure decreased the radiation hazard concern. It provides practitioners with reliable information on the needle position with the real time imaging and the multiplanar reconstruction that makes it less operator dependent, more accurate and less time-consuming tool of guidance than the previously mentioned methods [14].

Approaches and ways used to place the needle either single unilateral or bilateral para median on both sides of celiac trunk, the choice between the single or bilateral methods is still difficult, counting on the personal skills and the experience of every operator. In this study we used single unilateral approach in 80% of patients, while bilateral approach was done in 20% of patient as pain was not relieved by single approach. We found it easy with great pain relief in all patients with no major complications happened.

Deciccio et al., (1997) stated that despite different approaches and methods used to place the needle, the success of the block depends on adequate spread of the injected neurolytic agent in the celiac plexus area.

In this study, CT-guided CPN was done by injection of 15-30ml of 90% ethanol. We achieved adequate pain resolution longed for 3 months for all patients in comparison with Bhatnagar et al., (2012) that performed CPN for 30 patients by 15-20ml of 50% ethanol injected bilaterally [15,16]. They reported successful CPN for all patients with notable pain relief only for 2 months.

We found that this technique successful rate was 100%. All of the studied patients experienced effective immediate pain relief with NRS scores of pain markedly reduced to less than 2. We observed highly significant ($p<0.001$) variance in the NRS scores of pain in all studied patients before
and after CPN. The peak reduction of the pain was observed in the first day after the CPN.

Numerical Rating Scale (NRS) is an 11 points scale from 0 to 10 where 0 indicates no pain & 10 indicates the worst pain perceived. NRS was more practical than graphic Visual Analogue Scale (VAS), easier to perceive for most people and doesn’t need clear vision, paper & pen [17].

Patients included in this study showed significant decrease in their NRS score and opioid consumption. All patients exhibited a decrease in their NRS scores at all measured time points from 1st day till 3 months post CPN. Prior block NRS score was 9.1 ±0.85. One day after CPN, pain severity decreased markedly to 1.3 ±0.71. Three months later, pain severity still decreased significantly to 2.3 ±1.02. This decrease in pain severity after CPN resulted in a high significant statistical difference p-value <0.001. That is similar to Bhatnagar et al. (2012) results who reported that the VAS score prior to CPN was 9.10±0.85. One day after CPN, VAS score markedly decreased to 1.2±1.02. 2 months after CPN, pain scores had decreased to 2.10±0.79 (p<0.001).

Carlson et al., (2001) stated that the use of CT fluoroscopy for the guidance of interventional radiologic procedures markedly decreased patient radiation dose and total procedure time compared with use of conventional CT guidance. The median calculated patient absorbed dose per procedure and the median procedure time with CT fluoroscopy were 94% less and 32% less, respectively, than those measurements with conventional CT scanning (p<0.05).

In our study the patient radiation exposure dose with CT fluoroscopy was 93% less than exposure dose with conventional CT as we found that the average DLP of total CTF dose in our study was 48.2mGy X cm Compared to study done by Joemai et al., [14] which reported an average DLP of 681 mGy X cm for biopsies and drainages while the procedures were completed at full dose parameters [14].

Conclusion:

CT fluoroscopy guidance for CPN provides high success rates in alleviating pain in HCC cancer patients as it allows accurate localization of the needle, accurate demonstration of anatomical structures and also reduce patient radiation dose & is less time consuming for sever ill patients. CPN should be considered earlier for controlling HCC related abdomen pain and not to be reserved as a last plan when everything else fails.

References

16- BHATNAGAR S., GUPTA D. and MISHRA S.: Bedside Ultrasound-Guided Celiac Plexus Neurolysis with Bilateral Paramedian Needle Entry Technique can be an Effective
تقنيات فعالة وأمان التنظير الإشعاعي بالأشعة المقطعية في تدبير الضفيرة العصبية البطنية في حالات أورام الكبد

يعاني الكثير من مرضى أورام الكبد الخبيثة من آلام شديدة وغير محتزمة. وتخفيف هذه الآلام يعتبر من أصعب ما يواجه المريض والطبيب المعالج.

يعتبر إحلال شبكة الأعصاب الجوفية باطنية أحد أطر علاج الآلام المصاحبة لأورام الكبد. وتم تنفيذ هذه التقنية بأكثر من طريقة ولقد تحقق استخدام التنظير الإشعاعي بالأشعة المقطعية كمرشح على غيره من الآلهزة من حيث الدقة والآمان حيث يوفر نظام الأشعة المقطعية.

الهدف من البحث هو تقييم تحليل شبكة الأعصاب الجوفية باطنية بإستخدام التنظير الإشعاعي بالأشعة المقطعية كطريقة فعالة لعلاج الألم البطن الناتجة عن أورام الكبد المتقدمة.

هذه الدراسة تم إجراؤها على ثلاثين مريض بعانون من آلام شديدة بالبطن نتيجة لوجود أورام كبد سرطانية غير مستجيبة للمسكنات النواتية أو حوادث مضاعفات نتيجة استخدام المسكنات.

خطوات البحث:

1. تحديد طبيعة الألم الموجود في البطن ودرجة قياسية بالنسبة إلى مقياس التناظرية الرقمي.
2. وضع المريض على مرحلة الأشعة المقطعية ثم أخذ صورة بالأشعة المقطعية للمنطقة محل الإعتقاد لتحديد مكان شبكة الأعصاب الجوفية باطنية وتحديد مسار إبرة الحقن من الجلد وحتى العقدة العصبية وإستخدام إرشاد التنظير الإشعاعي بالأشعة المقطعية وصولاً إلى شبكة الأعصاب الجوفية باطنية على جانب واحد أو على جانبي الشريان الجوف باطني ومن ثم حقن 200 ملليتر من الكحول الإيثيلي (تركيز 1%).
3. تم إستخدام مقياس التناظرية الرقمي لتحديد درجة قياس الألم في آلام قبل الحقن، ثم بعد يوم، وبعد إسبوع ثم شهر و3 أشهر من الحقن.
4. تم تسجيل التغييرات التي تطرأت على جرعات المسكنات ومقارنتها بما كانت عليه قبل الحقن.

وبعد الإتصال الإحصائي قد خلصت النتائج إلى نجاح كبير على المستوى التقني بنسبة 100% من حالات البحث كما أدى إلى تقليل جرعات المسكنات التي يتولىها هؤلاء المرضى يومياً وقليل من أثارها الجانبية.