Effects of Autogenic Drainage in Patients with Abdominal Surgery

FATEN A. HAMZA, Ph.D.
The Department Physical Therapy for Cardiovascular-Respiratory Disorders and Geriatrics, Faculty of Physical Therapy, Delta University for Science and Technology, Egypt

Abstract

Background: Surgery has become an important part of global health care, estimated to about 234 million patients operated yearly. Surgery and general anesthesia directly affects the respiratory system. Surgeries alter postoperative pulmonary function causes impairment of lungs volume such as total lung capacity, vital capacity and tidal volume and can develop post pulmonary complications.

Aim of Study: Is to study the effect of autogenic drainage (AD) breathing technique in abdominal surgery patients to prevent those complications.

Patients and Methods: Thirty participants who underwent abdominal surgeries with age 30-60 years were included in the study for one week of intervention. Total seven sessions was given in a week and pre and post readings were taken by using inch tape at Axillary level, inspiratory capacity was taken with help of incentive spirometer (Helios 401) and peak expiratory flow rate with peak flow meter.

Results: It showed significant difference when pre values were compared with outcome post measures like inspiratory capacity with incentive spirometer, peak expiratory flow rate with peak flow meter, and chest expansion using inch tape.

Conclusion: The present study concluded that Autogenic drainage of breathing control is effective for improving chest expansion, peak expiratory flow rate and inspiratory capacity in abdominal surgery patients.

Key Words: AD – Abdominal surgeries – Incentive spirometer – Peak flow meter – Inch tape.

Introduction

POSTOPERATIVE pulmonary complications (PPC) present high rates of morbidity, mortality, increased hospital costs and prolonged hospital stay predominantly in abdominal surgery [1]. Surgery has become an important part of global health care, which is estimated to about 234 million patients operated yearly. Approximately 16% will suffer a complication within 30 days [2]. Diseases affecting the abdominal cavity are generally treated under their own name (e.g. appendicitis). Surgeries of the abdominal organs are performed according to the description of that organ (stomach, kidney, liver, etc.) Most commonly performed abdominal surgeries are Appendectomy; exploratory laparotomy refers to the opening of the abdominal cavity and for the direct examination of its contents, for example, to locate a source of bleeding or trauma etc. and Laparoscopy is a minimally invasive procedure of the abdominal cavity where rigid.

Upper abdominal surgical procedures are associated with a higher risk of complications more frequently than are lower abdominal surgeries [4,5]. The risk rates of postoperative pulmonary complications in upper abdominal surgery range from 17% to 88%.

In addition, The Surgical Infection recommends that duration for complicated abdominal infections should be limited to 4-7 days, and may be discontinued sooner in the absence of clinical signs of infection [6]. Pulmonary complications are most common, and are defined as pulmonary abnormalities occurring in the post-operative period producing clinically significant identifiable disease and dysfunction that adversely affect the clinical course [7]. Surgery and general anesthesia directly affects the respiratory system. Surgeries alter postoperative pulmonary function, as observed by impairment of lungs volume such as total lung capacity, vital capacity and tidal volume. It also reduces the efficiency of efforts to cough for as long as one week and also fall in an oxygen arterial pressure and in oxygen-hemoglobin saturation [8]. Currently Pulmonary complications have significant impact on morbidity, mortality after major abdominal surgery [9]. Post-operative pulmonary complications (PPC’S) have been reported to occur in 5-10% of the general patient population and in 4-22% of patients who has undergone abdominal surgery.
According to some authors, surgery lasting for more than 210 minutes is a risk factor for postoperative pulmonary complications [11]. That found a lack of lung inflation, Prolong recumbent positioning, decreased cough effectiveness, increased risk associated with retained pulmonary secretions and change ventilation pattern. Patients operated with upper abdominal surgery (UAS) usually develop a restrictive lung pattern, with changes to pulmonary mechanics in the first post-operative days, leading to a high risk of developing pulmonary complications (PPCs) [12]. Atelectasis, pneumonia, trachea bronchitis, bronchospasm, exacerbation of chronic obstructive pulmonary disease, acute respiratory failure and prolonged mechanical ventilation (longer than 48 hours) can be classified as PPCs [13,14]. The goals of chest physiotherapy are to improve ventilation-perfusion matching, increase lung volume, enhance mucociliary clearance, and decrease pain. When normal breath is inhaled, with or without a breath-hold of 1-3 seconds, followed by rapidly squeezing out air by contracting the chest wall and abdominal muscles with the mouth and glottis open. The huff should be active, but not a violent or explosive exhalation. Subsequent huffs may start at higher lung volumes (further into the inspiratory reserve volume) and again move into the expiratory reserve volume (but perhaps not as deep as the first mid-level huffs) [15]. Autogenic drainage (AD), an airway clearance technique (ACT) recognized by the International Physiotherapy [16]. That uses controlled breathing and minimal coughing to clear secretions from your chest. It involves hearing and feeling your secretions as you breathe out and controlling the desire to cough until secretions are high up and easily reached with minimal effort [16]. This technique has been shown to create sustained airflow that is higher than usual in the airways of the lungs which affects the lungs and together with pain from incision and stitches makes deep breathing and coughing difficult and thick mucus collected in patient's lungs. Autogenic Drainage has used session to exclude any pre-existing pulmonary and cardiac diaphragmatic breathing to mobilize secretions by varying conditions of expiratory airflow [21]. Confirm the results of this study; concerning that much of the work with autogenic drainage has been focused on patients with COPD should take into account its effects on lung volumes, expiratory flow, and dynamic airway compression. Care should be taken to avoid airway collapse during expirations in patients with reduced lung recoil pressure [22].

Patients and Methods

The study submits in Special Zaied Hospital. Thirty participants who underwent laparotomy with the age group of 30-60 years. The study extended from October 2017 to March 2018, were included according to inclusion and exclusion criteria in this study. The inclusion criteria for this study were both male and female participants, those who are willing to participate in this study, individuals who underwent elective and emergency laparotomy. And exclusion criteria for the study were unstable and complicated abdominal surgery patient's any pre-existing pulmonary and cardiac conditions. Patients with chronic respiratory disorders and age more than 65 years. The intervention was given once in a day, 7 days in a week for a period of 1 week. AD was given for around 10-15 minutes. Each treatment session lasted for 15-30 minutes including rest periods in between. Begin with some gentle relaxed breaths known as breathing control. First phase take a very slow deep breath in through your nose, to your absolute maximum possible. Pause at the end of the full
breath with your mouth slightly open and count for 3-4 seconds. Start by sitting in a comfortable upright position. Second phase Breathe out through your mouth. This should be active (you can feel your tummy muscles tighten) but should not be forced. Third phase you should listen and feel for secretions crackling as you breathe out are the crackles at the beginning, middle or end of your breath out? Beginning=High up in large tubes of your chest Middle=In the middle sized tubes End =In the small tubes. The intervention was given once in a day (7 sessions) for 1 week. Outcome measures Chest expansion measurement, it was measured with inch tape at Axillary level of the chest. Peak expiratory flow rate was measured by meter in L/minutes. Pre and post readings were taken before and after intervention of Incentive spirometer (Helios 401). Inspiratory capacity was measured using incentive spirometer. Pre and Post readings were taken before and after intervention.

Results

On comparison of pre and post intervention of AD using chest expansion and using paired *t*-test showed *t*-value 8.246 and *p*-value is <0.0001 is considered extremely significant. On comparison of pre and post intervention of AD using incentive spirometer and using paired *t*-test showed *t*-value 0.244 and *p*-value is 0.8105 is considered not significant. On comparison of pre and post intervention of AD using peak flow meter and using paired *t*-test showed *t*-value 12.464 and *p*-value is <0.0001 is considered extremely significant.

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Mean ± SD</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autogenic drainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest expansion</td>
<td>0.484</td>
<td>8.246</td>
<td><0.0001</td>
</tr>
<tr>
<td>Incentive spirometer</td>
<td>4.838</td>
<td>0.244</td>
<td>0.8105</td>
</tr>
<tr>
<td>PEFR</td>
<td>85.517</td>
<td>12.464</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Discussion

In spite of many advances in the case of the surgical patient, pulmonary problems continue to constitute the major post-operative complications. The study shows significant changes in chest expansion, peak expiratory flow rate and inspiratory capacity within a week of AD intervention after one week of intervention. Chest expansion breathing exercises can lead to sustained increase in trans pulmonary pressure which helps to distend the lungs and re-inflates the collapsed lung segments, Thoracic expansion exercises re-expands the lung tissue and helps in mobilizing and clearing excess bronchial secretions which is explained by the phenomenon of interdependence [1]. It states that expanding forces exerts effective pressure that dilates the airways as Tran's pulmonary pressure and lung volume increases. Normal airways are maintained by this Trans pulmonary pressure. It counteracts airway compression during forced expiration. Interdependence has physiological and pathological significance. Weakening of these forces of interdependence leads to airway dysfunction and causes dysfunction of the airways [1]. In abdominal surgeries various changes occur in pulmonary function and respiratory mechanics,
leading to post-operative pulmonary complication and leads to reduction in chest expansion. By using interventions like Autogenic Drainage (AD) there is gradual increase in inspiratory and expiratory reserve volumes from functional residual capacity and a 2 to 3 second breath-holding period. These results in collateral filling among the alveoli improved ventilation and mobilized secretions. This exercise decreases the atelectasis area and increase ventilation maintains expansion of lungs and prevents collapse due to which chest expansion was improved [11]. They found that Chest clearance techniques, autogenic drainage breathing in COPD patients with thirty subjects were selected within 40-60 years of age and who had moderate chronic obstructive pulmonary disorder is effective in clearance of secretions [1]. Spirometer measures maximal expiratory flow and exhaled volume during an expiratory vital capacity maneuver. According to previous studies on the test is widely available and is highly standardized in terms of performance, methodology, and equipment specifications [18]. Peak flow rate obtained as maximum instantaneous expiratory flow that is used as an indicator of airway caliber. Measurement of pulmonary functions can also be checked by measuring the peak expiratory flow (PEF) [7]. In healthy lungs, the factors determining the Peak Expiratory Flow Rate are the expiratory muscle strength, especially the abdominals. The dimensions of the intra and the extra thoracic airways, the maximum alveolar pressure reaching speed and the ability of the lung to undergo elastic recoil [8]. That found associated compliance with Peak Expiratory Flow Monitoring in Home Management of Asthma. They concluded that short term compliance with PEF measurement is fairly good [13]. AD may help preserve lung function over the course of the disease, in keeping with current goals of CF disease management [27]. The short-term studies showed that AD cleared a clinically significant amount of sputum in a single treatment session [28].

Conclusion:

The present study concluded that Autogenic drainage effective for improving chest expansion, peak expiratory flow rate and inspiratory capacity in abdominal surgery patients.

References

