Comparative Study for Cervical Spinal Fusion Using Cervical Cages with and Without Bone Granules

MOHAMED MOHAMED, M.D.* and AHMED S.K. ABDELWAHED, M.D.**

The Department Neurosurgery, Faculty of Medicine, Beni Sueif * and Cairo** Universities

Abstract

Background: Cervical spinal fusion is a surgical procedure that joins selected bones in the cervical spine.

The anterior approach to the cervical spine was developed for treatment of cervical disc, it involves removing the symptomatic disc from an anterior approach without placement of a bone graft. Early studies demonstrated fusion rates with Anterior Cervical Discectomy (ACD) were similar to those of procedures of anterior cervical discectomy and fusion (ACDF) using bone graft.

The anterior cervical discectomy and fusion with instrumentation (ACDFI) technique involves the additional stabilization of the cervical spine & graft with instrumentation.

Cages were introduced to be used with either autologous or synthetic bone grafts, promoting stability and encouraging fusion. Comparing to graft alternatives, cage interbody implants have better biomechanical properties, designed to maximise biocompatibility and reduced graft dislodgements, increased fusion rates, and decreased foraminal stenosis. However, placement of implants introduces hardware-related complications.

Aim of the Study: This prospective study aims to compare the results of ACDFI using cages with & without synthetic bone granules evaluating the outcomes, fusion and associated morbidities.

Patients and Methods: Prospective study of 42 patients operated upon between 2012 and 2014 in Cairo University Hospitals & Beni Sueif University Hospital with ACDFI using cervical cages. Patients were divided into two groups:
- Group (A) 22 patients operated by ACDFI with placement of cages only
- Group (B) 20 patients operated by ACDFI with placement of cages and synthetic bone granules.

Both groups underwent postoperative clinical follow-up for an average of 12 months, and results were evaluated according to radiographic evidence of fusion and Fisher exact probability test was used to compare fusion of both groups. We made considerations for patient's age, sex, osteoporosis, and smoking habits. We recorded fusion rates, cervical alignment, postoperative complications & patient satisfaction using Visual Analogue Score (VAS).

Results: 42 patients were included in the study. The mean age was 46, 18 of them were females and 24 were males. 29 patients had single level discs and 13 patients had two levels.

One year follow-up fusion rates that were achieved in group (A) were 81.8% while group (B) reached 95%. One year follow up on achievement of alignment of cervical spine was 90.9% of patient's in group (A) and in group (B) was 95% of cases.

There were no problems regarding surgical technique or dislodgment in both techniques. Only in one patient in group (A) CSF leak developed and resolved. One patient in group (B) developed a keloid at incision site.

Conclusion: Fusion rate is one of several factors that guide surgical decision making for cases requiring ACDFI. Fusion rate is significantly higher in group (B) using cages filled with synthetic bone granules than in group (A) with cages only. Age, sex, osteoporosis and smoking status have not given significantly different results between both groups studied.

Key Words: Cervical cages – Discectomy – Bone granules.

Introduction

CERVICAL spinal fusion is a surgical procedure that joins selected bones in the cervical spine.

Surgical pathologies of the cervical spine have commonly been addressed through anterior and posterior approaches. The anterior approach to the cervical spine was developed in the 1950s as a treatment for cervical disc. This procedure involved removing the symptomatic disc from an anterior approach without placement of a bone graft. Early studies demonstrated fusion rates with Anterior Cervical Discectomy (ACD) were similar to those of procedures of anterior cervical discectomy and fusion (ACDF) using bone graft [1,2,15].

This extra step has been proposed to promote bony fusion maximizing stability and maintaining
Comparative Study for Cervical Spinal Fusion Using Cervical disc space height reducing risk of foraminal stenosis. Placement of a bone graft also introduced new morbidities of graft dislodgement causing anterior or posterior compression, as well as donor site complications when autograft is used [3,5,14].

The anterior cervical discectomy and fusion with instrumentation (ACDFI) technique involves the additional stabilization of the cervical spine & graft with instrumentation. Instrumentations includes a wide array of wiring, plates, cages and screws [4,6,13].

Although autologous bone graft remains the gold standard, associated morbidity has promoted alternatives, including allograft, synthetic and factor/cell-based grafts. Cages were introduced to be used with either autologous or synthetic bone grafts, promoting stability and encouraging fusion. Comparing to graft alternatives, cage interbody implants have better biomechanical properties, designed to maximise biocompatibility and reduced graft dislodgements, increased fusion rates, and decreased foraminal stenosis. However, the extra step of implant placement introduces hardware-related complications including dislocation, malunion and infection [7,8,9,16].

Objective:
This prospective study aims to compare the results of ACDFI using cages with & without synthetic bone granules evaluating the outcomes, fusion and associated morbidities in an attempt to evaluate the omission of the bone grafting step from the technique [10,11,12].

Patients and Methods

Prospective study of 42 patients operated upon between 2012 and 2014 in Cairo University Hospitals & Beni Suef University Hospital with ACDFI using cervical cages.

Patients were divided into two groups:
- Group (A) 22 patients operated by ACDFI with placement of cages only.
- Group (B) 20 patients operated by ACDFI with placement of cages and synthetic bone granules.

Both groups underwent post operative clinical follow-up for an average of 12 months, result were evaluated according to radiographic evidence of fusion and Fisher exact probability test was used to compare of fusion in both groups, making considerations for patient's age, sex, osteoporosis, and smoking habits. We recorded fusion rates, cervical alignment, postoperative complications & patient satisfaction using Visual Analogue Score (VAS).

The study was arbitrarily limited to a comparison of the two techniques in patients with cervical disc disease at one or two levels between C-3 and C-7.

Exclusion criteria:
1- Three level discs or more.
2- Neck pain only without radiculopathy.
3- Cervical spine anomalies.

Patients were subjected to:
- History taking.
- General and neurological examination focusing on motor and sensory examination.
- Investigations: Pre-operative MRI cervical spine (T1 and T2 images, axial and sagittal views), plain x-ray cervical spine (A.P. view, lateral view in neutral position and lateral views in full flexion and extension) + CT of the cervical spine. Post-operative plain radiographs 1-2 days after surgery then at 3, 6 and 12 month to judge fusion.

Surgical technique:
All patients were operated upon under general anesthesia, in the supine position with the patient's head in mild extension on a horse shoe head rest with a rolled towel between the patient's shoulder blades. The shoulders were taped gently to the sides of the OR table to facilitate imaging down to the C7-T1 region. The elbows were padded to avoid compression.

A right-sided approach was performed via a transverse or longitudinal incision. The platysma was extensively undermined to provide tissue relaxation and prevent retraction-induced injury. Blunt dissection was used to dissect down to and expose the ventral aspects of the vertebral bodies. The prevertebral fascia and longus coli muscles were divided using electrocautery. Intraoperative fluoroscopy was used to confirm the operative levels. Lateral retraction blades were placed bilaterally under the medial edges of the longus coli musculature. Distraction posts were placed in the vertebral body above and the vertebral body below the interspace to be treated.

With the aid of the operating microscope, reaming of adjacent vertebral bodies, appropriate discectomy, removal of posterior longitudinal ligament (not routinely indicated but performed when the adequacy of the decompression is in question or
when there was concern of an extruded disc fragment through the ligament) and drilling of the osteophyte (using high speed drill) or removal using 1mm Kerrison rongeur were performed to decompress the spinal cord and nerve roots.

Based on the extent of the discectomy defect, an appropriate interbody fusion cage was placed. An extra step in group (B) only, the cage was filled with synthetic bone granules. In case of double levels, we started surgery at the most compressive level and then sequentially moved to the next level and complete the process as well. This was followed by proper hemostasis and closure in layers.

Results

42 patients were included in the study. The mean age was 46, 18 of them were female and 24 were male. 25 patient had single level discs and 14 patients had two levels.

One year follow-up fusion rates achieved in Group (A) 81.8% Group (B) 95% Alignment of cervical spine after surgery.

Group (A) was exallent 90.9% - group (B)was exallent 95% making considerations for patient’s age, sex, osteoporosis, and smoking habits in both group. Also radiographic findings (cervical X-ray) early post operative and every 3 month till 24 month to asset fusion rate.

<table>
<thead>
<tr>
<th>Table (1): Clinical findings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Neck, shoulder pain</td>
</tr>
<tr>
<td>Radicular pain</td>
</tr>
<tr>
<td>Upper extremity weakness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table (2): Distribution of patients by level of operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C3-4</td>
</tr>
<tr>
<td>C4-5</td>
</tr>
<tr>
<td>C5-6</td>
</tr>
<tr>
<td>C6-7</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Table (3): Results of operation.

<table>
<thead>
<tr>
<th>Findings</th>
<th>ACDFI– bone granul</th>
<th>ACDFI+ bone granul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Excellent</td>
<td>8</td>
<td>36.4</td>
</tr>
<tr>
<td>Good</td>
<td>9</td>
<td>40.9</td>
</tr>
<tr>
<td>Fair</td>
<td>4</td>
<td>18.2</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Excellent : All preoperative symptoms relieved, abnormal signs unchanged or improved.

Good : Minimum persistence of preoperative symptoms, abnormal signs unchanged or improved.

Fair : Definite relief of some preoperative symptoms, others unchanged or slightly improved.

Poor : Signs and symptoms unchanged.

Lateral radiographs in flexion and extension showed no motion at operated levels in both group. One year after surgery, bone bridged the site of disc removal in 18 of 22 in group (A) and 19 of 20 in group (B) (significant difference (p 0.5) Fisher exact probability test statistic value is 0.823.

<table>
<thead>
<tr>
<th>Table (4): Results of fusion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fusion</td>
</tr>
</tbody>
</table>

Alignment of the cervical spine was excellent in 20 patient and 2 patient was good in group(A) and 19 patient was exallent and one patient was good in group (B). (significant difference (p 0.5) Fisher exact probability test statistic value is 1. Disc height is maintain in both group. Alignment of the cervical spine was judged to be excellent if normal cervical lordosis was retained, good if there was loss of lordosis and/or anterior angulation of less than 5 ~.

<table>
<thead>
<tr>
<th>Table (5): Alignment of cervical spine after surgery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>Good</td>
</tr>
</tbody>
</table>
Differences were statistically significant \(p < 0.5 \), Fisher exact test statistic value is 1) fusion in single level comparing to double level, also age sex, smoker habit have no significant devefrance in both group.

There were no problems regarding surgical technique or dislodgment in both techniques. Only in one patient in group A CSF leak developed and resolved. One patient in group B developed a keloid at incision site.

Discussion

This study revealed a radiologic and clinical long-term result with an over average 1 year follow-up data after ACDFI surgery. The main stream of the published data about results after ACDFI with and without bone substitutes included fusion rates higher than 90% mostly without significant clinical relationship, therefore, the researchers suggested that the outcome of the stand-alone cage procedure was adequate.

After following patients from both groups for one year, Group (A) patients seemed to have inferior results in terms of fusion rate according to this study. Moreover, the fusion rate of 81.8% meant the non-fused index segments did not achieve bone fusion eventually although 12 months have passed.
The relationships between the demographic data and radiologic/clinical outcome had no statistical significance. Previous literature demonstrated that gender, age, level of surgery, cage height and BMD had no significance as outcome factors of the ACDFI surgery [12].

Previous researchers suggested that patients having ACDFI experienced pain relief according to the VAS score for two-year follow-up. However, this study demonstrated that the neck and arm VAS score at one year follow-up was comparable to published results. Clinical and radiologic outcome had no statistical relationship in this study, overall results of ACDFI without bone granules had shown to be less satisfactory with the course of time [15,16].

This unsatisfactory outcome by increased VAS score meant that patients were less satisfied in Group (A). Although we failed to find key factors that affecting the inferior outcomes, it seems that ACDFI without bone granules surgery did not have superiority to ACDFI with bone substitute technique [15-16].

We recommend that treatment of patients with degenerative cervical spine disease, various factors (age, general condition, surgical level, bone quality) should be considered thoroughly for ideal care.

Limitations to our study included its the number of case limitations, the enrolled patients in this study were not randomized meaning possibility of biased data and the lack of comparing control group with ACDF without instrumentation. The operations were not performed by a single surgeon, and operative details like extent of endplate preparation or the make and model of the cervical cages used were not standardized.

Despite a twelve months follow-up, the key factors were not identified clearly for the unsatisfactory outcome of ACDFI with or without bone granules. Investigations about other factors like, meta-analysis of environmental aspects or patients’ specific factors would be helpful for determining the accurate outcome evaluation of ACDFI surgery.

Conclusion:

Fusion rate is one of several factors that guide surgical decision making for cases requiring ACDFI. Fusion rate is significantly higher in group (B) using cages filled with synthetic bone granules than in group (A) with cages only. Age, sex, and smoking status have not given significantly different results between both groups studied.

References

دراسة مقارنة لجراءات التثبيت العنقية باستخدام الأقفاص الكربونية
مع إضافة أو عدم إضافة حبيبات عظمية

الألفاظية: إعداد القرارات الطبية هو إجراء جراح يتطلب نظام مختارة في العمود الفقري العنقية. يتم تحضير الدقة للإجراءات الفضوية المعتمدة للأفراد من العظام أو زرع سلبة علمية. الدراسات المتقدمة أظهرت أن نتائج الإصلاح مع الاستعداد الأرضي للأفراز المعتمدة مع نتائج الاستعداد الأرضي للأفراز الفضوية مع زرع سلبة علمية.

جراءات الأثنان الفضوية العنقية للأفراد مع زرع سلبة علمية والثنيات بالوساطة الجراحية هو أسلوب جراحية يتضمن خطة إضافية لتنبيه القرارات الطبية والتقنية للظروف المحيطة باستخدام أدوات جراحية مزدوجة.

الآلفاظ: نُطلق عليها ك poate تم استخدام النظام المائي في النظام العصبي لدعم الاستقرار والتحفيز في العمود الفقري.

المقالة: دراسة مستقلة لـ 24 مريضا نُشرت جراحا بين 2012 و 2014 في مستشفى جامعة القاهرة وبي سي سوف لاستخدام الأفراز العنقية للأفراد مع الإصلاح والثنيات، تم تقديم الضوابط والمعايير المحددة:

- مجموع (أ) 23 مريضا تم إجراء جراحة استعمال الأثنان الفضوية للأفراد باستخدام الأقراص فقط.
- مجموع (ب) 20 مريضا تم إجراء جراحات استعمال الأثنان الفضوية والأثنيات باستخدام الأقراص وبدائل النظام الإضافي.

النتائج: 24 مريضا تم تطبيقهم في الدراسة. كان متوسط العمر 46 عاماً و18.5 منهم كانوا سيدات و24.5 منهم عائدين من الأثنان الفضوية.

المتابعة: المتابعة الواردة في الدراسة لـ 163 مريضًا في المجموعة (ب) وصلت إلى 84.8% بين المجموعة (ب) ووصلت إلى 89.9% من المرضى في المجموعة (أ). في المجموعة (أ) كانت 83.3% من الحالات. في المجموعة (أ) حدث تسرب للسائل النخاعي الشمالي، ووقوع أصلي في الطبقات، ووقوع أصلي للكرة، ووقوع أصلي للكرة، ووقوع أصلي للكرة.

الختام: نسبة الإصلاح الفضائي مع الإصلاح والثنيات، نسبة الإصلاح اعتمدت على طريقة ذات دالة في المجموعة (ب) باستخدام الأقراص الملونة ببدائل النظام العصبي عن المجموعة (أ) بالاقراص فقط.