Human Platelet Alloantigen (HPA-5) Polymorphism in Sickle Cell Disease Patients with Vaso-Occlusive Crisis

IMAN R. EL-MAHGOUB, M.D.*; AZZA A. ALI, M.D.**; AMIRA S.A. FARHAN, M.Sc.**; MONA K. EL-GHAMRAWY, M.D.***; HEBATULLA FAROUK, M.D.***; SOHA ATEF, M.D.**; GEHAN H. SHAHIN, M.D.* and RANIA SOLIMAN, M.Sc.**

The Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University*, National Research Centre** and Pediatric Department, Faculty of Medicine Cairo University***

Abstract

Background: Vaso-occlusive crisis (VOC) is a significant cause of morbidity and mortality in sickle cell disease (SCD) patients. As polymorphisms in human platelet antigens (HPA) exhibit a prothrombotic nature, we hypothesized that specific HPA polymorphisms could have a role in the pathogenesis of VOC in SCD.

Aim of Study: This study investigated HPA-5 G1648A polymorphism among Egyptian SCD patients.

Patients and Methods: This study included 100 SCD patients and 50 controls. Patients were divided into, VOC group (n=60), and steady-state group (n=40). Genotyping was done using PCR-based Restriction Fragment Length Polymorphism (RFLP) technique.

Results: The HPA-5 mutant genotypes were significantly associated with SCD compared to controls (p=0.003), while no significant difference was observed between VOC and steady-state groups (p=0.179). Regarding the frequency of VOC episodes, the HPA-5 homozygous mutant genotypes showed significant differences (p=0.003). Regarding VOC complications, the HPA-5b/5b genotype was significantly associated with acute chest syndrome only (p=0.021).

Conclusion: The HPA-5 G1648A polymorphism is common among SCD patients. Although neither of them is a major determinant of vasculo-cclusion in SCD, they are significantly associated with VOC complications and may alter their outcome.

Key Words: Sickle cell disease – Vaso-occlusive crisis – HPA – PCR-RFLP.

Introduction

SICKLE cell disease (SCD) is an inherited disorder caused by a single point mutation (GTG>GAG) in the sixth codon of the β-globin gene, producing hemoglobin S (HbS) [1]. HbS polymerization changes the morphology and life span of the red blood cell, causing vaso-occlusive crisis (VOC), which is a sign of SCD [2]. VOC results from an interaction between the red sickle cell and the endothelium, enhancing cellular adhesion to the vascular endothelium and causing activation of the endothelial cells of the vessels and chronic inflammation [3]. Heterocellular aggregation results from the adhesion of both red and white blood cells to the vessel wall, followed by the trapping of erythrocytes and a reduction in blood flow, followed in turn by microcirculation occlusion [4].

Although a large proportion of sickle cell phenotypes have been assigned to variable risk factors [5], there are interindividual variations due to genetic variations in platelet receptors and coagulation factors [6], which supports the notion that prothrombotic polymorphisms influence SCD phenotype. They regulate primary hemostasis via the maintenance of vascular integrity and the repair of wounds. Platelets play an important role in the prevention of blood loss at sites of injury, and disturbances in the activity of platelets lead to thrombotic or hemorrhagic disorders [7].

Platelet activation is mediated by human platelet alloantigens (HPAs), a combination of platelet membrane glycoprotein (Gp) and different cell-bound factors. More than 19 HPAs have been identified [8]; HPA (1-5) are the most important [9]. Eleven HPAs are on integrin αIIβ3 (GPIIb/IIIa), and of remaining eight, three are on GPIb/IX/V, two on integrin a2b1, and one each on GPIV, GPV, and CD109 [10]. It has been suggested that genetic polymorphisms due to single base-pair substitutions and single amino acid replacements in HPA-1 (T196C, Leu33Pro), HPA-2 (T524C, Met145Thr),
HPA-3 (T2622G, Ile843Ser), HPA-4 (G526A, Arg143Glu), and HPA-5 (G1648A, Glu505Lys) cause the prothrombotic state, by changing the structure of the platelets and/or the expression levels of the adhesion proteins expression levels. These polymorphisms are accompanied by structural changes [11] and increased expression of the high affinity receptors of collagen, which subsequently changes the binding of other factors [12]. It has been demonstrated that HPA polymorphisms play a prothrombotic role [13], and they have been associated with hypercoagulable states and disorders of thrombosis [14], such as ischemic stroke [15], fetal loss, and ischemic heart and cerebrovascular diseases specifically in SCD patients [16].

In this study, we inspected the association of HPA polymorphic variants with VOC, which allows for the identification of SCD patients at high risk for developing VOC. We assumed that VOC is accompanied by specific HPA polymorphic variants. We investigated the distribution of HPA-5 alleles among SCD patients (with and without VOC) using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique.

**Subjects and Methods**

This retrospective case control study comprised a total of 100 SCD patients (66 of them were SS and 34 were Sβ) diagnosed and followed up at the Hematology Outpatient Clinic, New Children Hospital, Cairo University from February 2014 to February 2015 and 50 healthy unrelated age and sex matched subjects as control group. Diagnosis of SCD was based on clinical presentation, hematological indices and hemoglobin electrophoresis. The study protocol was approved by the Research Ethics Committee of Cairo University. Informed consents were obtained willingly from all subjects and/or their guardians before enrolment in the study.

SCD patients were assigned to one of two groups: Patients who had at least single VOC event during the previous 9 months. (VOC group; n= 60), or those who reported no such events over the last 9 months (Steady-state group; n=40).

VOC group included 33 (55%) males and 27 (45%) females. Their ages ranged between 2 and 27 years with mean age of 11.8 years. Steady-state group included 19 (47.5%) males and 21 (52.5%) females with a mean age of 11 years (range 1.5-29 years). Control group comprised 30 (60%) males and 20 (40%) females, their ages ranged between 2 and 25 years with mean age of 15 years.

For all included patients, review of medical records, detailed history-taking by direct interview and thorough clinical examination were performed. Laboratory investigations for all enrolled subjects included complete blood picture using automated cell counter (Cell Dyn-1700), Leishman stained peripheral blood film examination, reticulocytic count, hemoglobin electrophoresis and genotyping of G1648A SNP of HPA-5 gene by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis.

**DNA extraction and genotyping:**

Genomic DNA extraction from whole blood was done using Gene JET Genomic DNA purification kit (Cat. #K0721 #KO72, Fermentas Life Sciences), following the manufacturer’s instructions. DNA samples were routinely stored at –20°C. Amplification of extracted DNA for detection of G1648ASNP of HPA-5 gene was performed using PCR technique in separate reactions. We used primers for amplification of G1648A mutation of HPA-5 gene as described by Hurd et al. [17]. Primers were provided by “The Midland Certified Reagent Co”.

- **For G1648A SNP of HPA-5 gene:**
  - Forward primer (5'-GTGACCTAAGAAGAGG-3').
  - Reverse Primer (5'-CTCTCATGAAAATGAGG-3').

Visualization of the amplified PCR products was performed using agarose gel electrophoresis and ultra-violet light trans-illumination. DNA-ethidium bromide complexes absorb ultra-violet light at 260, 300 or 360nm and emit at 590nm in the red orange region of the visible spectrum. PCR amplification of DNA fragment carrying SNP of HPA-5 gene gave a band of 435bp.

For HPA-5 gene polymorphism, MnlI restriction enzyme (supplied by Thermo Scientific, Code no. #FD 1644) was used (Fig. 1).

HPA-5 G1648A polymorphism is caused by an amino acid substitution of glutamine 505 by lysine (Glu505Lys) due to G→A substitution at 1648 position (G1648A) in the coding region of HPA-5 gene. The presence of glutamine (a allele) at locus 505 within the coding region of HPA-5 gene (wild type allele) produced three fragments of 33,97 and 136bp whereas the presence of lysine (b allele or mutant allele) generated restriction fragments of 97 and 169 bp after MnlI digestion [17].
Iman R. El-Mahgoub, et al.

Fig. (1): Agarose gel electrophoresis of PCR fragments digested by restriction enzymes. HPA-5 system (MnlI endonuclease): Allele a=fragments of 33, 97 and 136bp; allele b=fragments of 97 and 169bp.

The subjects were considered as:
- Normal HPA-5 (wild type, a/a) genotype if 3 bands are detected at 33, 97 and 136bp.
- Homozygous for b allele (b/b) homo-mutant genotype if 2 bands are detected at 97 and 169bp.
- Heterozygous for b allele (a/b) hetero-mutant genotype if 4 bands are detected at 33, 97, 136 and 169bp.

Statistical methods:
Data were analyzed using IBM SPSS advanced statistics version 20 (SPSS Inc., Chicago, IL). Mean, standard deviation, median and range were done for numerical data. Frequency and percentage were done for qualitative data. The relation between qualitative variables was done using Chi-square test or Fisher's exact test. Comparison between the two groups was done using Student t-test for quantitative data. Kruskal-Wallis test (non-parametric ANOVA) was used for not normally distributed quantitative data to compare between 3 groups. Risk estimation was done using Odds ratio (OR) with 95% confidence interval (CI) using logistic regression. All tests were two-tailed. A p-value <0.05 was considered significant.

Results
The frequency of the studied genotypes among SCD patients and normal controls is presented in Table (1). The HPA-5 mutant genotypes are significantly more frequent among Sickle cell-diseased patients than normal controls (p=0.003). The genotyping of HPA-5 G1648A polymorphisms revealed no statistical significant differences between VOC and steady-state patient groups (p=0.179) as shown in Table (2).

On comparing the frequency of VOC episodes among VOC group of SCD patients according to their HPA-5 variant genotypes, taking the wild-type HPA-5 a/a as reference, Univariate analysis identified homozygous HPA-5 b/b to be independently associated with more vaso-occlusive episodes (p-value=0.006) (Table 3).

Regarding the complications of VOC, including acute chest syndrome (ACS), stroke and avascular necrosis (AN), the HPA-5 homo-mutant genotype showed significant association with ACS only (p=0.021).

Table (1): The frequency of the studied genotypes among SCD patients and normal controls.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SCD (n=100)</th>
<th>Normal control (n=50)</th>
<th>p-value</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPA-5 a/a</td>
<td>52 (52)</td>
<td>48 (96)</td>
<td>*0.003</td>
<td>14</td>
</tr>
<tr>
<td>HPA-5 a/b</td>
<td>25 (25)</td>
<td>1 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPA-5 b/b</td>
<td>23 (23)</td>
<td>1 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant p-value.

Table (2): The frequency of HPA-5 genotypes in VOC and steady-state patient groups.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>VOC (n=60)</th>
<th>Steady-state (n=40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPA-3 a/a</td>
<td>27 (45.0)</td>
<td>25 (62.5)</td>
<td>0.179</td>
</tr>
<tr>
<td>HPA-3 a/b</td>
<td>16 (26.7)</td>
<td>9 (22.5)</td>
<td></td>
</tr>
<tr>
<td>HPA-3 b/b</td>
<td>17 (28.3)</td>
<td>6 (15.0)</td>
<td></td>
</tr>
</tbody>
</table>

Table (3): Association of HPA-5 variant genotypes with frequency of VOC episodes in VOC group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Genotype frequency (%)</th>
<th>Frequency of episodes Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPA-5:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>27 (45)</td>
<td>2.6±1.6</td>
<td>*0.006</td>
</tr>
<tr>
<td>Mutant genotypes</td>
<td>33 (55)</td>
<td>3.5±1.5</td>
<td></td>
</tr>
</tbody>
</table>

* Significant p-value.
Table (4): Association of HPA-5 variant genotypes with VOC complications in VOC group.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Genotype frequency</th>
<th>ACS</th>
<th>p-value</th>
<th>Stroke</th>
<th>p-value</th>
<th>AVN</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
<td>N (%)</td>
<td></td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>27 (45)</td>
<td>4 (6.6)</td>
<td>*0.021</td>
<td>3 (5)</td>
<td>0.061</td>
<td>6 (10)</td>
<td>0.363</td>
</tr>
<tr>
<td>Homo-mutant genotype</td>
<td>17 (28.3)</td>
<td>9 (15)</td>
<td></td>
<td>7 (11.6)</td>
<td></td>
<td>4 (6.6)</td>
<td></td>
</tr>
<tr>
<td>HPA-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>27 (45)</td>
<td>4 (6.6)</td>
<td>0.266</td>
<td>3 (5)</td>
<td>1.00</td>
<td>6 (10)</td>
<td>1.00</td>
</tr>
<tr>
<td>Hetero-mutant genotype</td>
<td>16 (26.7)</td>
<td>6 (10)</td>
<td></td>
<td>2 (3.3)</td>
<td></td>
<td>5 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Wild type</td>
<td>27 (45)</td>
<td>4 (6.6)</td>
<td>*0.011</td>
<td>3 (5)</td>
<td>0.119</td>
<td>6 (10)</td>
<td>0.653</td>
</tr>
<tr>
<td>Mutant genotypes</td>
<td>33 (55)</td>
<td>19 (31.6)</td>
<td></td>
<td>9 (15)</td>
<td></td>
<td>9 (15)</td>
<td></td>
</tr>
</tbody>
</table>


Discussion

Previous studies of genes that modify the pathogenesis of vascular occlusion in SCD have identified mutations in prothrombotic genes (HPA, MTHFR-C 677T, Factor V leiden-G1691A, Prothrombin-G20210A), which may influence vascular occlusion in SCD. The interaction of these genetic mutations may have the synergistic effect of increasing VOC. Knowledge of the mutation prevalence of these genes would ensure preventive treatment for VOC. There is evidence of thrombosis caused by platelet hyperactivity in SCD patients who are genetically predisposed for hyperaggregability [18].

Below, we report the distribution and influence of G1648A of HPA-5 gene variants on vascular occlusion in SCD patients using the PCR-RFLP technique.

We observed a significantly higher frequency of HPA-5/G1648A polymorphic variants (HPA-5a/5b and HPA5b/5b) among SCD patients versus control subjects (p=0.003). However, Driss et al., found no significant differences in the HPA alleles and genotype frequencies in SCD versus healthy controls [19].

In our study, a comparison of HPA-5 genotype frequencies between VOC and steady-state groups of SCD patients failed to show statistical significance (p=0.179). This can be attributed to a higher level of HbF in the steady-state patient groups, which is known to alleviate vascular complications in SCD patients under hydroxyurea treatment, and this may refute the effect of the studied polymorphism [20]. In contrast, the frequency of the HPA-5 polymorphism in a Brazilian cohort of SCD patients with VOC was higher than in those with no VOC [14]. Another study showed a significant difference in the prevalence of HPA-5 polymorphisms between Bahranian SCD patients with VOC and those without it [21].

Nevertheless, in a comparison of the HPA-5 allelic genotypes among the SCD patients with VOC taking the wild-types HPA-5a/5a as references, univariate analysis determined that homozygous HPA-5b/5b are independently associated with more frequent VOC episodes (p=0.006), whereas heterozygous forms exhibited no statistical significance (p=0.896). Patients with mutant HPA-5 genotypes (homozygous or heterozygous) had significantly more frequent VOC episodes (p=0.03). Our findings indicate that the homozygosity of alleles 5b can be considered genetic variants that increase the frequency of VOC and the probability of prothrombotic activity in SCD patients.

Regarding the complications of VOC, including acute chest syndrome (ACS), stroke and avascular necrosis (AN), the HPA-5 homo-mutant genotype showed significant association with ACS only (p=0.021).

Accordingly, the studied polymorphisms of HPA-3 and HPA-5 may influence the course of the disease.

In Conclusion: G1648A polymorphism of the HPA-5 gene are common among Egyptian SCD patients. The association of HPA-5 mutant genotypes with a higher frequency of VOC episodes and their complications, the genetic polymorphism can be considered genetic variants that increase the risk of frequent VOC episodes and influence the crises’ outcome.

References


تأخير تعدد الشكل الجيني لجينات HPA5 في مرضى الأميما المنجلية

يتميز مرض الأميما المنجلية بإرتباطه بإنسداد الأوعية الدموية. إن نوادي إنسداد الأوعية الدموية هي من أهم أسباب المرض والموت لمرضى الأميما المنجلية. تقدم كبرى قد حدث في فهم أسباب إنسداد الأوعية الدموية والطرق المختلفة لعلاجها والوقايتها منها.

مفصل الصفائح البشري يتسبب في تشتيت والتشق الصفائح، وهو مركب من البروتين السكري مع عدة عوامل أخرى مزعجة للخلية.

لأن تعدد النمط الجيني لفصل الصفائح البشرية يرتبط زيادة في القابلية للتشق، إقترحنا في هذا البحث أن تعدد النمط الجيني لفصل الصفائح البشرية قد يكون مرتبطة بنوادي إنسداد الأوعية الدموية في مرضى الأميما المنجلية.

المتعدد من هذا البحث تقييم تأثير تعدد النمط الجيني لفصل الصفائح البشرية إنسداد الأوعية الدموية في مرضى الأميما المنجلية. وهذا باستخدام تقاسم البترور التسلسل وتبني تقديم طول القائمة المتعددة الأشكال.

كشف عن وجود تعدد النمط الجيني لفريغ المتجانس في المجموعة التي تتأتي من HPA-5، أما التمثيل الجيني لنوادي إنسداد الأوعية الإدارة الذي لا تتأتي من نوادي إنسداد الأوعية الدموية بنسبة 45% و 27% من التوالي، أما التمثيل النمط الجيني المتجانس وجد بنسبة 28% و 20% من التوالي، أما بالنسبة 2% يحملون النمط الفريد HPA-5 للمجموعة الضيقة وجد أن 1% يحملون النمط الطبيعي للجين المتجانس و 2% يحملون النمط المتجانس. وكانت نسبة وجود النمط الجيني المتجانس بين مجموعة المرضى والمجموعة الضيقة ذات أهمية إحصائية. ولكن مقارنة نسبة وجود النمط الجيني المتجانس بين مجموعتين المرضى لم تكن ذات أهمية إحصائية 5 للجين HPA.

ولكن مرتبطة سلبيًا نسبة تعدد نوادي إنسداد الأوعية الدموية مرتبطة إيجابية بمستوى الهيموجلوبين F، ولكن مرتبطة سلبيًا نسبة تعدد نوادي إنسداد الأوعية الدموية مرتبطة إيجابية بمستوى الهيموجلوبين F، لا يوجد من المرضى أكثر تعرضاً HPA-5 في هذا البحث الكشف عن وجود النمط الجيني لكل من الذي يحمي F لحدود نوادي إنسداد الأوعية الدموية ويمكن أن ترجع ذلك إلى زيادة مستوى الهيموجلوبين من حدوث نوادي إنسداد الأوعية الدموية في مرضى الأميما المنجلية وذلك لتلفي مجموعات المرضى للعلاج بعقار الهيدروكسيبيريا.