Study of the Protective Effect of Nigella Sativa Oil on Tartrazine-Induced Hematological Disorders in Rats

RAMEZ A. BARHOMA, M.D.*; AMIRA M. ELSHAMY, M.D.** and ALAA I. AMER, M.D.***

The Departments of Physiology*, Biochemistry** and Pathology***, Faculty of Medicine, Tanta University, Egypt

Abstract

Background: Tartrazine is a food colorant used in most food products that consumed almost every day. In view of the adverse effects of its excessive ingestion, it is essential to investigate new and safe protection. Nigella sativa oil, by its beneficial medicinal effects may offer a good protective therapy in this issue.

Aim of Study: In this study the possible protective effect of Nigella Sativa Oil (NSO) on hematological disorders induced by tartrazine was investigated.

Material and Methods: Thirty male Wistar rats were included in this study and divided into three groups: Control group (treated by distilled water), tartrazine treated group (20mg/kg/day), Nigella sativa+ tartrazine treated group (10ml NSO/kg/day + tartrazine treatment). Hematological state was evaluated by measuring total Red Blood Cells (RBCs) count, Packed Cell Volume (PCV), Hemoglobin (Hb) concentration, Mean Cell Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Total White Blood cells (WBCs) count and total platelets count. Moreover, oxidative markers; Malondialdehyde (MDA) and reduced glutathione (GSH), were measured in kidney, spleen, Bone Marrow (BM) and RBCs. In addition, bone marrow was examined for histopathological changes.

Results: Tartrazine significantly decreased RBCs count, Hb content, PCV, total WBCs count, lymphocytic, monocyctic and granulocytic counts, and significantly increased the MCV, MCH and the platelet count, it also significantly decreased GSH, and increased MDA levels in RBCs, kidney, spleen and BM tissues. Histopathological examination provoked increased number of megakaryocytes and occurrence of myelofibrosis in BM of tartrazine group. Treatment with Nigella sativa oil significantly improved all the tartrazine-induced disturbances.

Conclusion: The findings of the current study revealed that Nigella sativa oil improved the tartrazine-induced hematological disorders, most probably through its antioxidant properties.

Key Words: Nigella sativa oil – Tartrazine – Hematological disorders – Antioxidant properties.

Introduction

In the last several years, great attention has been paid to assessing the toxic effects of food additives and colorants. Food colorant is any dye that shows its color when added to the food or non-food items such as drugs and pharmaceuticals [1,2]. Among the food colorants, tartrazine is considered to be very toxic to humans when consumed in excess amount [3-6].

Tartrazine (also known as FD &C Yellow 5 and/or E102) is a water soluble synthetic lemon-yellow dye, commonly used as a food colorant [7-9]. It is used in food products that consumed almost every day such as soft drinks, flavored chips, cereals, cake mixes, pastries, custard powder, jelly, sauces, powdered drink mixes, ice cream, candy, chewing gum, yogurt, noodles, potato chips, biscuits [10], and other non-food products like soaps, cosmetics, shampoos and some medications [11].

However, long-term or excessive ingestion of tartrazine has been reported to induce several side effects [11-16], such as allergic reactions, renal and hepatic impairment [10]. Also, it has been reported that tartrazine induce chromosomal aberration, carcinogenic and mutagenic effects in mammalian cells, as well as learning and memory loss and behavioral changes in animals [8,11,17,18]. These adverse effects vary depending on the route of administration and the administered dose [8]. Tartrazine toxicity may results directly or indirectly from its metabolic products [19], as some metabolites of tartrazine can generate reactive oxygen species, producing oxidative stress, that affect hepatic and renal architectures and biochemical profiles [20].
Nigella sativa (also known as black cumin), is an annual plant belongs to the botanical family of Ranunculaceae [21]. It commonly grows in Europe, Middle East and Western Asia but commonly used in the Middle East, North Africa and India as a traditional medicine for a wide range of diseases including headache, bronchial asthma, gastrointestinal problems, dysentery, infections, back pain and hypertension [22,23].

The Nigella sativa oil has many beneficial medicinal effects, such as acting as an antioxidant, carminative, anti-tumor, diuretic, anti-hyperlipidemic and anti-inflammatory agent [24-26].

The pharmacological investigations of the effect of Nigella sativa oil on hematological factors are few; nevertheless, the effect of Nigella sativa oil on tartrazine induced haemat-immunological alterations in rats had not been studied yet. So, the present study aimed to investigate the effect of Nigella sativa oil on some hematological parameters in presence of tartrazine.

Material and Methods

Chemicals:

Tartrazine was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA), whereas Nigella sativa oil was purchased from Al-Nasr Press for Natural Oils, (Giza, Egypt). All the used kits were obtained from Bio-Diagnostic Co. (Giza, Egypt).

Animals and study design:

This work was carried out at Tanta Faculty of Medicine, from Mars 2019 to June 2019, according to guidelines of the Ethical Committee of Medical Research, Faculty of Medicine, Tanta University, Egypt.

30 male Wistar rats, weighing 200-220g., were purchased from the Experimental Animal House, Faculty of Science, Tanta University. The rats were kept in clean cages (5 rats per cage) under controlled environmental conditions, 12/12h. light/dark cycle, at room temperature (23 ±2ºC), with free access to water and food.

Rats were divided randomly into 3 groups, 10 rats per each group.

• Group 1: Control group, rats were gavaged with 1 ml distilled water, daily as a vehicle.

• Group 2: Tartrazine treated group, rats received a daily dose of tartrazine (20mg/kg body weight), dissolved in 1ml distilled water, by oral gavage [27]. This dose was considered to be effective, as it exceeds the acceptable daily intake [28], and not lethal because, it still far from the lethal dose [29].

• Group 3: Nigella sativa + tartrazine treated group, received the same dose of tartrazine, as in group 2, beside a daily dose of 10ml/kg body weight Nigella sativa oil [30].

All medications were given daily for 60 days, and in order to optimize doses; animals were fasted for 1 hour prior to doses administration.

Blood and tissue collection:

At the end of the experiment, and after 24 hours from the last medication, rats in all groups were anaesthetized with 60mg/kg ketamine with 6mg/kg xylazine injected intraperitoneally [31], midline laparotomy was performed and blood samples were collected, from each rat, immediately from the heart through cardiac puncture.

Each blood sample was divided into two parts. The first was placed in EDTA tubes for hematomatological evaluations, and the second was placed in citrated tubes and prepared for determination of oxidative markers in erythrocyte.

Also, parts from kidneys and spleens were immediately dissected out and prepared for determination of oxidative markers in their tissues. Then femurs were excised for determination of oxidative markers and histopathology examination of bone marrow, and finally the animals were sacrificed by cervical dislocation.

Hematological evaluations:

Blood samples in EDTA containing test tubes was used to measure total Red Blood Cells (RBCs) count, Packed Cell Volume (PCV), Hemoglobin (Hb) concentration, Mean Cell Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), total White Blood Cells (WBCs) count, lymphocytic, monocytic, and granulocytic counts and total platelets count using an automatic hematological assay analyzer (BC-2800 VET mindray auto hematology analyzer).

Determination of oxidative markers in erythrocytes:

Citrated blood samples were centrifuged, and the packed red blood cells were washed twice with isotonic saline to remove the buffy coat. Then, the packed cells were subjected to hemolysis according to the method of Dodge et al., [32] then centrifuged at 12000rpm, for 40-45min, at 4ºC. The supernatant was used for the measurement of reduced Glutathione (GSH) and Malondialdehyde (MDA) using
GSH and MDA assay kits, based on the spectrophotometric methods as described by Akerboom and Sies [33,34], respectively.

Determination of oxidative markers in kidney and spleen:

Weighted pieces from kidneys and spleens were homogenized in sodium phosphate buffer (pH 7.4) to measure reduced Glutathione (GSH), and Malondialdehyde (MDA), using GSH and MDA assay kits, according to the previous methods [33,34].

Determination of oxidative markers in bone marrow:

Bone marrow cells were obtained from the excised femurs by flushing technique [35], then they were centrifuged at 2500rpm for 7 minutes and the supernatant was collected for measurement of GSH and MDA, using GSH and MDA assay kits, according to the previous methods [33,34].

Histopathological examination of bone marrow:

Excised femurs were fixed in 10% buffered formalin, then, decalcified in 5% EDTA for 10 days, and finally, specimens were embedded in paraffin, followed by sectioning into slices 8 micrometers thickness. Tissue sections were stained with hematoxylin and eosin and evaluated by light microscopy at X40 magnifications [36].

Statistical calculations:

Collected data were statistically analyzed by one-way ANOVA, followed by Tukey test, to determine statistical significance between different groups using Statistical Package for Social Sciences (SPSS) software, version 23.0 (SPSS Inc., Chicago, IL, USA). Data was presented as mean ± SD, and p<0.05 was considered statistically significant.

Results

Effect of tartrazine and Nigella sativa oil on hematological parameters:

Administration of tartrazine significantly decreased the RBCs count, Hb content, PCV, total WBCs count, lymphocytic, mononuclear and granulocytic counts while, it significantly increased the MCV, MCH and the platelet count, when compared with those of control group. Treatment with Nigella sativa oil improved all these parameters as it significantly increased the RBCs count, Hb content, PCV, total WBCs count, lymphocytic, mononuclear and granulocytic counts. Also, it significantly decreased the MCV, MCH and the platelet count, when compared with those of tartrazine group (Table 1).

Effect of tartrazine and Nigella sativa oil on oxidative stress markers:

The GSH levels in RBCs, kidney, spleen and bone marrow were significantly reduced, while their MDA levels were significant elevated, following tartrazine administration, when compared to those of control group. However, treatment of rats with Nigella sativa oil together with tartrazine, significantly elevated GSH levels, and, significantly reduced MDA levels in erythrocytes, kidney, spleen and bone marrow when compared to those of tartrazine group (Table 2).

Bone marrow histopathological observations:

Bone marrow from control rats showed normal cell morphology Fig. (1A). While, those from tartrazine treated rats showed abnormalities in the form of increased numbers of Megakaryocytes (Mks) and appearance of myelofibrosis Fig. (1B,C). These abnormalities were completely improved and cell morphology returns to normal after treatment with Nigella sativa oil Fig. (1D).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Tartrazine</th>
<th>Tartrazine + NSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs (X 10^6/mm³)</td>
<td>6.38±0.26</td>
<td>5.20±0.22a</td>
<td>6.14±0.17</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>14.13±0.53</td>
<td>11.83±1.02a</td>
<td>13.64±0.71b</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>42.28±1.84</td>
<td>36.94±1.35a</td>
<td>40.69±1.30b</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>65.29±0.32</td>
<td>73.09±0.32a</td>
<td>65.31±0.32b</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>21.70±0.31</td>
<td>24.30±0.32a</td>
<td>21.90±0.32b</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.83±0.71</td>
<td>33.25±1.01</td>
<td>32.93±0.52</td>
</tr>
<tr>
<td>Platelet (X 10^3/mm³)</td>
<td>536.30±6.63</td>
<td>568.50±8.68a</td>
<td>539.10±6.64b</td>
</tr>
<tr>
<td>WBCs (X 10^3/mm³)</td>
<td>7.96±0.19</td>
<td>6.50±0.23a</td>
<td>7.30±0.23b</td>
</tr>
<tr>
<td>Lymphocytes (X 10^3/mm³)</td>
<td>6.65±0.16</td>
<td>5.41±0.19a</td>
<td>6.10±0.19b</td>
</tr>
<tr>
<td>Monocytes (X 10^3/mm³)</td>
<td>0.51±0.03</td>
<td>0.42±0.03a</td>
<td>0.47±0.04b</td>
</tr>
<tr>
<td>Granulocytes (X 10^3/mm³)</td>
<td>0.82±0.02</td>
<td>0.67±0.02a</td>
<td>0.75±0.02b</td>
</tr>
</tbody>
</table>

Values are presented as the mean ± SD (n=10). a p<0.05 vs. control group. b p<0.05 vs. tartrazine group.

RBCs : Total Red Blood Cells count.
PCV : Packed Cell Volume.
Hb : Hemoglobin concentration.

MCV : Mean Cell Volume.
MCH : Mean Corpuscular Hemoglobin.
MCHC : Mean Corpuscular Hemoglobin Concentration.
WBCs : Total White Blood Cell count.
Table (2): Levels of MDA and GSH in RBCs, kidney, spleen and bone marrow tissues for all groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Tartrazine</th>
<th>Tartrazine + NSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs GSH (µmol/g Hb)</td>
<td>9.79±0.36</td>
<td>4.22±0.39</td>
<td>9.43±0.62b</td>
</tr>
<tr>
<td>RBCs MDA (nmol/g Hb)</td>
<td>6.19±0.09</td>
<td>10.35±0.65a</td>
<td>7.36±0.23a,b</td>
</tr>
<tr>
<td>Renal GSH (µmol/g protein)</td>
<td>13.44±0.84</td>
<td>8.81±0.94a</td>
<td>12.58±0.90b</td>
</tr>
<tr>
<td>Renal MDA (µmol/g protein)</td>
<td>1.54±0.23</td>
<td>2.24±0.15a</td>
<td>1.59±0.11b</td>
</tr>
<tr>
<td>Spleen GSH (µmol/g protein)</td>
<td>7.19±0.16</td>
<td>4.93±0.55a</td>
<td>7.08±0.26b</td>
</tr>
<tr>
<td>Spleen MDA (µmol/g protein)</td>
<td>0.12±0.06</td>
<td>0.21±0.01a</td>
<td>0.13±0.01b</td>
</tr>
<tr>
<td>BM GSH (µmol/g protein)</td>
<td>23.29±2.03</td>
<td>12.51±1.22a</td>
<td>18.22±2.60a,b</td>
</tr>
<tr>
<td>BM MDA (µmol/g protein)</td>
<td>3.22±0.33</td>
<td>5.85±0.53a</td>
<td>3.63±0.35b</td>
</tr>
</tbody>
</table>

Values are presented as the mean ± SD (n=10).

a: p<0.05 vs. control group.
b: p<0.05 vs. tartrazine group.

GSH: Reduced Glutathione.
MDA: Malondialdehyde.

Fig. (1): Bone marrow histopathology (X40). (A) Control group: Normal cell morphology. (B,C) Tartrazine group: Increased number of Megakaryocytes (MKs) indicated by arrows and myelofibrosis indicated by a circle. (D) Nigella sativa treated tartrazine group: Normal cell morphology.

Discussion

The main finding of this study, is that treatment with nigella sativa oil resulted in correction of tetrazine induced hematological alterations and exhibited a notable immune stimulatory effects, as dissected in this current study.

As regarding the hematological parameters, results obtained from the present work revealed a significant alteration in the blood picture indicated by decreased RBCs count, PCV and Hb content upon tartrazine treatment. Moreover, the decreased RBCs count was associated with increased MCV and MCH, with no alteration in the MCHC, refer-
ring to the occurrence of normochromic macrocytic anemia. Similar findings were recorded by previous studies [9,37-40].

These alterations appeared to be mediated through provocation of oxidative stress response as indicated herein by increased MDA and decreased GSH levels in RBCs which could reduce their life span due to oxidation of their membrane phospholipids [41], and in BM which, together with myelofibrosis, may affect the function of hematopoietic stem cells of BM; most probably mediated via different signaling pathways that affect their hematopoietic function as recorded previously [42-44].

In accordance, Battisti et al., [45] and Zhou et al., [46] recorded that oxidative stress could be involved in the pathophysiology of some hematopoietic diseases. Also, oxidative damage has been suggested to be associated with inadequate erythropoietin production [47], which was considered to be the main mechanism of anemia due to impaired erythropoiesis [48].

It has been reported that oxidative stress-related anemia could be mediated via oxidation of erythrocyte membrane phospholipids with subsequent shortening of erythrocyte life span; increased production of liver hepcidin with blocking of intestinal iron absorption and mobilization; reduction in transferrin levels with diminished iron availability and resistance to erythropoietin actions [41].

In addition, tartrazine can inhibit iron absorption by developing RBCs [9], induce conformational alterations and great damage in the helicity of Hb by direct binding with its central cavity [49,50] and interfere with absorption of vitamins and minerals essential for erythropoiesis [51] through producing atrophy of the gastric glands and ulceration of its mucosal lining [30,52].

The renal oxidative stress noted in tartrazine treated rats in the present study came in agreement with, and confirmed by Himri et al., [20] and Mehedi et al., [18] who reported altered renal histological structure in experimental animals treated with tartrazine. Moreover, Amin et al., [10] reported a tartrazine induced significant elevation in renal function tests, and, Rus et al., [53] found that tartrazine causes congestion and edema in the kidney associated with atrophy of renal structures.

Interestingly, co-administration of tartrazine and Nigella sativa oil in the present study significantly increasing the RBCs count, PCV and Hb content when compared to tartrazine treated rats, these findings came in agreement with previous studies [21,54,55].

These findings could be mediated, partially in part, through mitigating redox state, as it significantly decreased MDA and increased GSH levels in RBCs; this attenuation of oxidative stress was shown to decrease susceptibility of RBCs to hemolysis with subsequent increase in their life span [56]. Moreover, antioxidants can improve BM hematopoietic stem cell survival and affect the potency and differentiation of these cells [57,58]. Consistently, Nigella sativa significantly increased the bone marrow cellularity [59]. In addition, administration of nigella sativa oil to tartrazine treated rats caused regeneration of gastric glands [30,60], possibly via prostaglandin mediated effect or through its antioxidant activity [61]. It also attenuated the renal oxidative stress [26,62], and significantly improved renal functions [63,64].

Regarding WBCs count, our investigations recorded a significant decrease in total WBCs, monocyte, granulocytic and lymphocytic counts of tartrazine treated rats. This could be explained also by the injurious effect of tartrazine on the hemopoietic stem cells of the bone marrow beside the oxidative stress that occurs in the BM and spleen, which are the main sites for their synthesis [65-68], as indicated herein by increased MDA and decreased GSH in BM and splenic tissues of tartrazine treated group compared to control one.

These results came in accordance with those reported by Sharma et al., [9] who revealed a decrease in total leucocytic count after tartrazine treatment which could be due to direct tartrazine toxicity on WBCs. Oxidative stress in spleen of tartrazine-exposed rats was recorded to be accompanied by concomitant diminution of peripheral lymphocytes with decreased proportion of CD8+ T lymphocytes in the spleen which was supposed to be mediated by the deleterious effects of tartrazine on lymphocyte proliferation and induction of cell death [28,38,40].

Notably, treatment with nigella sativa oil exhibited a significant increase in total WBCs, monocytic, granulocytic and lymphocytic counts, together with correction of bone marrow picture when compared to tartrazine treated rats, which could be mediated through attenuating tartrazine induced oxidative stress parameters in splenic and BM tissues.

In line with our findings, treatment with nigella sativa was shown to enhance the total WBCs count, significantly increase the weight of the spleen and
the bone marrow cellularity, indicating its immuno-
nostimulatory activity [59]. In addition, Nigella
sativa extract was reported to increase in the phago-
cytic activity through its role in stimulating the
immune cells and increase the activity of immune
potential [69], antioxidant and anti-inflammatory
activity which may protect the phagocytic cell
[23,70] or by the effect of Nigella sativa on the
DNA synthesis during cell proliferation and the
ability of scavenging the super oxide radicals [71].

On the other hand, regarding platelet count,
our investigations recorded a significant increase
in the platelet count of tartrazine treated rats which
was in accordance with the study of Golli et al.,
[28] who suggested that the rise in platelet counts
may be reactive or secondary to a pathological
condition such as infection, inflammation, iron
deficiency or stress [72]. This increase in platelet
counts may be attributed to the potentially dele-
terious effect of this dye, and could lead to a risk of
thrombosis and cardiovascular disease [28].

This increased platelet count could be explained
by the increased number of megakaryocytes de-
tected in the bone marrow histopathology. It is
well established that megakaryocytes give rise to
the circulating platelets and there is a relationship
between the number of megakaryocytes in the bone
marrow and the number of platelets in the circula-
tion [73,74]. However, abnormal proliferation of
megakaryocytes can cause malignant diseases like
megakaryocytic leukemia, which characterized by
proliferation of abnormal megakaryocytes and
myelofibrosis [75].

Meanwhile, normalization of platelet count was
noted upon nigella sativa treatment and may be a
result of normalization of bone marrow megakary-
ocyes. It was in agreement with the study of
George and Kumaran, [21] who reported that nigella
sativa oil produced a significant decrease in the
platelet count, preventing the monosodium glutam-
ate induced thrombocytosis.

The recorded hematological alteration in this
current study (decreased RBCs, WBCs and lympho-
cytes with increased platelets count), are consis-
tent with the blood picture findings of some
hematopoietic diseases like aplastic anemia, mye-
lofibrosis and megakaryocytic leukemia [76-78].
Moreover, high Reactive Oxygen Species (ROS)
production can inhibit self-renewal and induce
senescence of hematopoietic stem cells, resulting
in their rapid exhaustion and hematopoietic dys-
function [79]. And, one of the clinical consequences
of hematopoietic stem cells damage is alternation
in the circulating RBCs, WBCs and platelet counts
[80]. Therefore, changes in the numbers of circu-
lating blood cells in several relations may reflect
toxicity to hematopoietic stem cells [81]. Accord-
ingly, from both blood picture and histopathological
findings, we could suggest possible tartrazine
induced toxicity to hematopoietic stem cells, and
an emerging role of antioxidants, like Nigella sativa
oil, in treating tartrazine associated hematological
disorders.

Conclusion:
The present study suggests that adverse effects
of tartrazine on hematological parameters are most
probably due to oxidative stress-induced bone
marrow toxicity, and treatment with Nigella sativa
oil prevents the altered hematological parameters
by its antioxidant effects.

Acknowledgment:
The authors would like to acknowledge the
technicians in Biochemistry and Pathology Depart-
ments and in the Central Laboratory, Faculty of
Medicine, Tanta University, Egypt for their tech-
nical assistance.

References
1- De BOER L.: Biotechnological production of colorants.
2- NEWSOME A.G., CULVER C.A. and VAN BREEMEN
R.B.: Nature’s palette: The search for natural blue color-
3- AL-DEGS YS: Determination of three dyes in commercial
soft drinks using HLA/GO and liquid chromatography.
4- AXON A., MAY F.E., GAUGHAN L.E., WILLIAMS
F.M., BLAIN P.G. and WRIGHT M.C.: Tartrazine and
sunset yellow are xenosterogens in a new screening assay
to identify modulators of human oestrogen receptor tran-
5- MPOUNTOUKAS P., PANTAZAKI A., KOSTARELI E.,
CHRISTODOULOUP P., KARELI D., POLILIOU E.,
MOURELATOS C., LAMBROPOULOUP V. and LI-
ALIARIS T.: Cytogenetic evaluation and DNA interaction
studies of the food colorants amaranth, erythrosine and
6- NGAH W.S., ARIFF N.F. and HANAFIAH M.A.: Prepa-
rating, characterization, and environmental application of
crosslinked chitosan-coated bentonite for tartrazine
adsorption from aqueous solutions. Water Air. Soil Pollut.,
7- MITTAL A., KURUP L. and MITTAL J.: Freundlich and
langmuir adsorption isotherms and kinetics for the removal
of tartrazine from aqueous solutions using hen feathers.
8- SASAKI Y.F., KAWAGUCHI S., KAMAYA A., OHISHI-
MA M., KABASAWA K., IWAMA K., TANIGUCHI K.
and TSUDA S.: The comet assay with 8 mouse organs:

45- BATTISTI V., MADERS L.D., BAGATINI M.D., SANDLING M., MAFDOfficers of Nigella sativa & Hematological Disorders

دراسة التأثير الواقعي لزيت حبسة البركة على إضطرابات الدم التي يسببها التتراتزين في الفئران

الهدف: تهدف هذه الدراسة إلى تقييم التأثير الواقعي المحتمل لزيت حبسة البركة على الإضطرابات الدموية الناجمة عن التتراتزين.

طريقة البحث: تم إجراء البحث على 30 من الفئران البالغة الذكور مقسمة إلى 3 مجموعات (10 جرذان في كل مجموعة):

- مجموعة 1: مجموعة ضابطة، معالجة بالماء المقطى.
- مجموعة 2: مجموعة معالجة بالتتراتزين (20 ملجم/كم²/يوم).
- مجموعة 3: مجموعة معالجة بزيت حبسة البركة (10 ملجم/كم²/يوم) + التتراتزين.

وفي نهاية التجربة تم ذبح الجرذان وجمع عينات الدم لتقييم حالة الدم عن طريق قياس إجمالي عدد خلايا الدم الحمراء (RBCs) وحجم الخلايا المكسيبة (MCH) ومتوسط الهيموجلوبين بالخلية (MCV) وتركيز الهيموجلوبين (Hb) ومقدار حجم الخلية (PCV) وتركيز الهيموجلوبين بالخلايا (MCHC) وإجمالي عدد خلايا الدم البيضاء (WBCs) وإجمالي عدد الصلفات الدموية. علامة على ذلك، تم تقييم حالة الأكسدة، عن طريق قياس المالونديالدهيد (MDA) والجولتناليون المختزل (GSH) في الكلي والدم والخلايا المخاطية والدم.

النتيجة: أدت المعالجة بالتتراتزين إلى انخفاض كبير في عدد كرات الدم الحمراء وتركيز الهيموجلوبين، حجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وتركيز الهيموجلوبين، وحجم الخلايا المكسيبة، إجمالي عدد خلايا الدم البيضاء، وضغط تطبيق في المجموعة المعالجة بالتتراتزين.

أثرت الدراسة الميكروسكوبية لنفس الدم الحذرن للخلايا المصنعة إلى ملاحظات تفاعلات في المجموعة المعالجة بالتتراتزين.

الخلاصة: كشفت نتائج الدراسة الحالية أن زيت حبسة البركة قد حسن الإضطرابات الدموية التي يسببها التتراتزين، على الأرجح من خلال خصائصه المضادة للأكسدة.